• Skip to primary navigation
  • Skip to main content
  • Skip to primary sidebar

WebMEM™

The Protocol for Structuring, Delivering, and Conditioning Trust-Scored AI Memory on the Open Web

  • Primer
  • Memory-First
  • Protocols
    • SDT Specification
    • WebMEM SemanticMap
    • WebMEM MapPointer
    • Digest Endpoint Specification
    • ProvenanceMeta Specification
    • AI Retrieval Feedback Loop Specification
    • Semantic Feedback Interface (SFI) Specification
    • Glossary Term Protocol (GTP) Specification
    • Examples
  • RFC
  • Glossary
  • About
    • WebMEM License
    • Mission
    • Charter

Directory Fragment

Directory Fragment is a structured index of entities—such as plans, providers, products, or services—published in a machine-ingestible format so AI systems can retrieve, sort, filter, and reason over the data without parsing a human-facing UI. It functions as a lightweight, retrieval-ready alternative to APIs for exposing curated datasets to agentic systems.

Unlike conventional directory pages, which present information visually for human users, a Directory Fragment embeds the same information in structured formats like YAML, JSON-LD, or TTL inside a Semantic Data Template, enabling AI to operate directly on the data.

🧠 Full Definition

Directory Fragments organize and expose a list of entities, each with defined attributes, in a way that supports fragment-level retrieval and reasoning. They typically include:

  • A title and entity type (e.g., “2025 Medicare Advantage Plans in Travis County, TX”)
  • A structured Entities array with IDs, names, attributes, and coverage or feature details
  • Provenance metadata and a Trust Layer declaration
  • Cross-links to related ProcedureFragments or EligibilityFragments

This approach allows AI agents to integrate directory data into recommendations, eligibility checks, and decision workflows without scraping or interpreting front-end code.

📌 Key Characteristics of Directory Fragment

  • Publishes entity-level data in retrieval-ready formats
  • Supports filtering, sorting, and reasoning by AI systems
  • Functions as a trust-scored dataset snapshot
  • Maintains provenance for every entity in the list

💡 Why It Matters

In AI-first retrieval, structured directories make complex datasets usable without API integration. Directory Fragments enable faster adoption by AI agents and ensure that entity data is accurately represented, attributed, and retrievable at the fragment level.

They also improve Retrieval Fidelity and Visibility Integrity by providing authoritative, machine-ingestible data sources.

🌐 WebMEM Perspective

Within the WebMEM framework, Directory Fragments are part of the Retrieval Layer of the Visibility Stack. They complement other fragment types by exposing structured datasets that agentic systems can directly operationalize.

🗣️ Example Use

“We published a Directory Fragment of licensed childcare providers in the state, enabling AI systems to recommend local providers with verified licensing and inspection history.”

🔗 Related Terms

  • Procedure Fragment
  • Eligibility Fragment
  • Trust Layer
  • Structured Retrieval Surface
  • Retrieval Fidelity


Primary Sidebar

Table of Contents

  • Adversarial Trust
  • Agentic Execution
  • Agentic Reasoning
  • Agentic Retrieval
  • Agentic System
  • Agentic Systems Optimization (ASO)
  • Agentic Web
  • AI Mode
  • AI Retrieval Confidence Index
  • AI Retrieval Confirmation Logging
  • AI TL;DR
  • AI Visibility
  • AI-Readable Web Memory
  • Canonical Answer
  • Citation Authority
  • Citation Casting
  • Citation Context
  • Citation Graph
  • Citation Hijacking
  • Citation Scaffolding
  • Co-Citation Density
  • Co-occurrence
  • Co-Occurrence Conditioning
  • Conditioning Half-Life
  • Conditioning Layer
  • Conditioning Strategy
  • Contextual Fragment
  • Data Tagging
  • data-* Attributes
  • Data-Derived Glossary Entries
  • DefinedTerm Set
  • Directory Fragment
  • Distributed Graph
  • Domain Memory Signature
  • EEAT Rank
  • Eligibility Fragment
  • Embedded Memory Fragment
  • Entity Alignment
  • Entity Relationship Mapper
  • Entity-Query Bond
  • Ethical Memory Stewardship
  • Explainer Fragment
  • Format Diversity Score
  • Fragment Authority Score
  • Functional Memory
  • Functional Memory Design
  • Glossary Conditioning Score
  • Glossary Fragment
  • Glossary-Scoped Retrieval
  • Graph Hygiene
  • Graph Positioning
  • High-Trust Surface
  • Implied Citation
  • Ingestion Pipelines
  • Installed Memory
  • JSON-LD
  • Machine-Ingestible
  • Markdown
  • Memory Conditioning
  • Memory Curation
  • Memory Federator
  • Memory Horizon
  • Memory Node
  • Memory Object
  • Memory Reinforcement Cycle
  • Memory Reinforcement Threshold
  • Memory Surface
  • Memory-First Publishing
  • Microdata
  • Misreflection
  • Passive Trust Signals
  • Persona Fragment
  • Personalized Retrieval Context
  • Policy Fragment
  • Procedure Fragment
  • PROV
  • Public Memory
  • Python Fragment
  • Query-Scoped Memory Conditioning
  • Reflection Decay
  • Reflection Log
  • Reflection Loop
  • Reflection Sovereignty
  • Reflection Watcher
  • Reinforced Fragment
  • Resilient Memory
  • Retrievability
  • Retrieval Bias Modifier
  • Retrieval Chains
  • Retrieval Fidelity
  • Retrieval Fitness Dashboards
  • Retrieval Share
  • Retrieval-Augmented Generation (RAG)
  • Same Definition Across Surfaces
  • Schema
  • Scoped Definitions
  • Scored Memory
  • Semantic Adjacency Graphs
  • Semantic Amplification Loop
  • Semantic Anchor Layer
  • Semantic Conditioning
  • Semantic Credibility Signals
  • Semantic Data Binding
  • Semantic Data Template
  • Semantic Digest
  • Semantic Persistence
  • Semantic Persistence Index
  • Semantic Proximity
  • Semantic Retrieval Optimization
  • Semantic SEO
  • Semantic Trust Conditioning
  • Semantic Trust Explainer
  • Semantic Visibility Console
  • Signal Weighting
  • Signal Weighting Engine
  • Structured Memory
  • Structured Retrieval Surface
  • Structured Signals
  • Surface Authority Index
  • Surface Checklist
  • Temporal Consistency
  • Three Conditioning Vectors
  • Topic Alignment
  • Training Graph
  • Trust Alignment Layer
  • Trust Anchor Entity
  • Trust Architecture
  • Trust Drift
  • Trust Feedback Record (TFR)
  • Trust Footprint
  • Trust Fragment
  • Trust Graph
  • Trust Layer
  • Trust Marker
  • Trust Node
  • Trust Publisher
  • Trust Publisher Archetype
  • Trust Publishing
  • Trust Publishing Markup Layer
  • Trust Scoring
  • Trust Signal
  • Trust Surface
  • Trust-Based Publishing
  • TrustRank™
  • Truth Marker
  • Truth Signal Stack
  • Turtle (TTL)
  • Verifiability
  • Vertical Retrieval Interface
  • Visibility Drift
  • Visibility Integrity
  • Visibility Stack
  • Visibility System
  • XML

Copyright © 2026 · David Bynon · Log in